为了解决这些接收机挑战,传统办法是采用超外差架构,采用的办法是将高频波段下变频至L波段,在下🟕🝃变频到L波段之前可🔼能还有一个中间级。
不过💔👦这种方法需要使用大滤波器,器件🐑⚮数量多且功耗高,无法达到杨杰的要求。
这个中间杨杰提出了一个🄇🞯新的技术架构,那就是高中频架构,在这个技术架构中,高频波段不是直接变频为基带,而是先转换到高中频,然后馈入直接♵变频接收机,也就是加入了一个转换器。
这个转换器的频率范围很大,该中频可以放在🙊5G到6G赫兹之间。中频频率从1G提高到5G赫兹,使得镜像频率范围比以前离得更远,因此前端滤波要求😚🂀大大降低,而前端滤波简化是缩小此类系统尺寸非常重要的一个因素。
这个转换器系统里面最核心的技术就是一个混频器技术,当接收机在接收到高频信号后输入射频能量进行放大,🅕🆙经过滤波后将频段降到了77到81赫兹,这些信号进入混频器,混频器利🌏♭用一个82G到86G赫兹范围的可调谐将77G到81G赫兹频段以10🍄🅦0兆赫兹一段下变频至5G赫兹。
前端滤波器处理W波段中的镜像抑制、和📉带外信号的一般抑制,防止来自杂🖤🔡🂆散信号通过混频器,这个滤波器是华兴集团公司特意研发的,但是滤波器的要求降低,所以尺寸可以做到非常小,利用现成的廉价小型滤波器即可轻松完成。
同时现在经过混频器变频的频率已经降到了5G赫兹,可以直接变频到基带,现在☍民用产品成熟的硅基器件此类产品已将🎍🏳🞋其频率范围提高到6G赫兹,也就是民用的消费级通信设的硅器件利用这个技术可以满足之前超高性能的军用和商用系统的需要。
而在发射侧,只需要一个小功率的氮化镓功率放大器将射频能量放大到5G赫兹z波形,当然频率跟接收机上的🅕🆙频率不同,这主要是是为了降低两个通道之间发生串扰的可能性。
然后对输出滤波以降低谐波🔺🅭水平,接着馈入上变频混🂢🐡🁕频器,变频到77G至81G赫兹前端。
这个技术架构一下子就将🄇🞯卫星通信🁫🈭🁟地面终端设备和民用消费级器件之间的这道壁垒给打破了!
【本章阅读完毕,更多请搜索读⚔👈书族小说网;https://kpc.lantingge.com 阅读更多精彩小说】